SRP309354 Track Settings
 
Stable DNMT3L Overexpression in SH-SY5Y Neurons Recreates a Facet of the Genome-Wide Down Syndrome DNA Methylation Signature

Maximum display mode:       Reset to defaults   
Select views (Help):
hmr       amr       pmd       sym counts ▾       sym coverage ▾      
Select subtracks by views and experiment:
 All views hmr  amr  pmd  sym counts  sym coverage 
experiment
SRX10240607 
SRX10240608 
SRX10240609 
SRX10240610 
SRX10240611 
SRX10240612 
SRX10240613 
SRX10240614 
SRX10240615 
SRX10240616 
SRX10240617 
SRX10240618 
SRX10240619 
SRX10240620 
SRX10240621 
SRX10240622 
SRX10240623 
SRX10240624 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX10240607  hmr  SRX10240607 hmr   Data format 
hide
 Configure
 SRX10240607  sym counts  SRX10240607 sym   Data format 
hide
 SRX10240608  hmr  SRX10240608 hmr   Data format 
hide
 Configure
 SRX10240608  sym counts  SRX10240608 sym   Data format 
hide
 SRX10240609  hmr  SRX10240609 hmr   Data format 
hide
 Configure
 SRX10240609  sym counts  SRX10240609 sym   Data format 
hide
 SRX10240610  hmr  SRX10240610 hmr   Data format 
hide
 Configure
 SRX10240610  sym counts  SRX10240610 sym   Data format 
hide
 SRX10240611  hmr  SRX10240611 hmr   Data format 
hide
 Configure
 SRX10240611  sym counts  SRX10240611 sym   Data format 
hide
 SRX10240612  hmr  SRX10240612 hmr   Data format 
hide
 Configure
 SRX10240612  sym counts  SRX10240612 sym   Data format 
hide
 SRX10240613  hmr  SRX10240613 hmr   Data format 
hide
 Configure
 SRX10240613  sym counts  SRX10240613 sym   Data format 
hide
 SRX10240614  hmr  SRX10240614 hmr   Data format 
hide
 Configure
 SRX10240614  sym counts  SRX10240614 sym   Data format 
hide
 SRX10240615  hmr  SRX10240615 hmr   Data format 
hide
 Configure
 SRX10240615  sym counts  SRX10240615 sym   Data format 
hide
 SRX10240616  hmr  SRX10240616 hmr   Data format 
hide
 Configure
 SRX10240616  sym counts  SRX10240616 sym   Data format 
hide
 SRX10240617  hmr  SRX10240617 hmr   Data format 
hide
 Configure
 SRX10240617  sym counts  SRX10240617 sym   Data format 
hide
 SRX10240618  hmr  SRX10240618 hmr   Data format 
hide
 Configure
 SRX10240618  sym counts  SRX10240618 sym   Data format 
hide
 SRX10240619  hmr  SRX10240619 hmr   Data format 
hide
 Configure
 SRX10240619  sym counts  SRX10240619 sym   Data format 
hide
 SRX10240620  hmr  SRX10240620 hmr   Data format 
hide
 Configure
 SRX10240620  sym counts  SRX10240620 sym   Data format 
hide
 SRX10240621  hmr  SRX10240621 hmr   Data format 
hide
 Configure
 SRX10240621  sym counts  SRX10240621 sym   Data format 
hide
 SRX10240622  hmr  SRX10240622 hmr   Data format 
hide
 Configure
 SRX10240622  sym counts  SRX10240622 sym   Data format 
hide
 SRX10240623  hmr  SRX10240623 hmr   Data format 
hide
 Configure
 SRX10240623  sym counts  SRX10240623 sym   Data format 
hide
 SRX10240624  hmr  SRX10240624 hmr   Data format 
hide
 Configure
 SRX10240624  sym counts  SRX10240624 sym   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

SRP309354

Stable DNMT3L Overexpression in SH-SY5Y Neurons Recreates a Facet of the Genome-Wide Down Syndrome DNA Methylation Signature

Publication

Experiment Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Selection Label Title
SRX10240607 0.657 13.3 78884 9042.9 6981 1639.7 2157 381301.7 0.986 RANDOM 3lgr1 GSM5135415: 3LGR1; Homo sapiens; Bisulfite-Seq
SRX10240608 0.661 13.1 79306 9016.4 7333 1724.9 2189 375946.2 0.986 RANDOM 3lgr2 GSM5135416: 3LGR2; Homo sapiens; Bisulfite-Seq
SRX10240609 0.668 14.4 78056 9358.8 7188 1632.0 2109 396141.1 0.986 RANDOM 3lgr3 GSM5135417: 3LGR3; Homo sapiens; Bisulfite-Seq
SRX10240610 0.667 14.3 80235 9015.5 7902 1736.3 2151 384238.0 0.985 RANDOM 3lp1r1 GSM5135418: 3LP1R1; Homo sapiens; Bisulfite-Seq
SRX10240611 0.664 12.1 78013 9166.0 7087 1686.7 2228 369453.1 0.986 RANDOM 3lp1r2 GSM5135419: 3LP1R2; Homo sapiens; Bisulfite-Seq
SRX10240612 0.671 12.5 74228 9783.7 6315 1589.5 2108 394338.8 0.985 RANDOM 3lp1r3 GSM5135420: 3LP1R3; Homo sapiens; Bisulfite-Seq
SRX10240613 0.666 14.8 85022 8515.5 8528 1746.9 2161 379945.7 0.985 RANDOM 3lp3r1 GSM5135421: 3LP3R1; Homo sapiens; Bisulfite-Seq
SRX10240614 0.649 12.9 80941 8833.6 7301 1654.5 2177 375214.5 0.985 RANDOM 3lp3r2 GSM5135422: 3LP3R2; Homo sapiens; Bisulfite-Seq
SRX10240615 0.667 13.1 76445 9450.5 6805 1608.8 2052 399521.2 0.983 RANDOM 3lp3r3 GSM5135423: 3LP3R3; Homo sapiens; Bisulfite-Seq
SRX10240616 0.660 13.4 80315 8903.3 7335 1673.3 2196 375494.6 0.986 RANDOM gfpgr1 GSM5135424: GFPGR1; Homo sapiens; Bisulfite-Seq
SRX10240617 0.659 15.3 84428 8546.8 8378 1813.1 2164 381394.9 0.986 RANDOM gfpgr2 GSM5135425: GFPGR2; Homo sapiens; Bisulfite-Seq
SRX10240618 0.663 18.0 86668 8531.9 9336 1833.5 2134 393513.1 0.986 RANDOM gfpgr3 GSM5135426: GFPGR3; Homo sapiens; Bisulfite-Seq
SRX10240619 0.665 14.8 84374 8641.8 8536 1808.3 2175 382430.5 0.986 RANDOM gfpp1r1 GSM5135427: GFPP1R1; Homo sapiens; Bisulfite-Seq
SRX10240620 0.662 15.2 84512 8577.5 8721 1842.0 2196 376233.5 0.986 RANDOM gfpp1r2 GSM5135428: GFPP1R2; Homo sapiens; Bisulfite-Seq
SRX10240621 0.661 13.0 80896 8992.8 7717 1714.0 2134 389539.1 0.986 RANDOM gfpp1r3 GSM5135429: GFPP1R3; Homo sapiens; Bisulfite-Seq
SRX10240622 0.653 14.1 85790 8410.1 8367 1747.1 2170 378544.9 0.986 RANDOM gfpp3r1 GSM5135430: GFPP3R1; Homo sapiens; Bisulfite-Seq
SRX10240623 0.656 15.6 87749 8253.9 8978 1811.1 2206 372597.1 0.985 RANDOM gfpp3r2 GSM5135431: GFPP3R2; Homo sapiens; Bisulfite-Seq
SRX10240624 0.649 14.4 86419 8411.2 8898 1752.2 2150 382933.6 0.985 RANDOM gfpp3r3 GSM5135432: GFPP3R3; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Identifying hypermethylated regions (HyperMRs) and mosaic methylation: Hyper-methylated regions (which we call HyperMRs) are of interest in plant methylomes, invertebrate methylomes and other methylomes showing "mosaic methylation" pattern. We identify HyperMRs with the dnmtools hypermr command for those samples showing "mosaic methylation" pattern.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.